Ch. 11 Conics

Circle
Parabola

Ellipse
Hyperbola

Add notes to pink sheet as needed:

$$
\begin{aligned}
& \text { Polar Coordinates } \\
& r^{2}=x^{2}+y^{2} \text { or } r=\sqrt{x^{2}+y^{2}} \\
& \tan \theta=\frac{y}{x} \\
& x=r \cos \theta \\
& y=r \sin \theta \\
& \text { polar form of a complex number } \\
& \quad r(\cos \theta+i \sin \theta) \\
& z_{1} \cdot z_{2}= \\
& r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right] \\
& \begin{array}{l}
\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right] \\
\text { DeMoivre's Theorem } \\
{[r(\cos \theta+i \sin \theta)]^{n}} \\
\quad=r n(\cos n \theta+i \sin n \theta)
\end{array}
\end{aligned}
$$

Conic Sections

Circles

$(x-h)^{2}+(y-k)^{2}=r^{2}$

Hyperbolas

Ellipses

Equations and Graphs of Parabolas

See pink sheet for standard equation

 of an ellipse centered at (0, 0)horizontal

$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad \frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$
a^{2} is the LARGEST value that creates the MAJOR axis $=2 a$

See pink sheet for standard equation

 of an ellipse centered at (0, 0)horizontal

vertical
$x^{2} \quad y^{2}$

An ellipse has $\mathbf{2}$ focus points called the foci located "c" units from the center.

$$
\boldsymbol{c}^{2}=\boldsymbol{a}^{2}-\boldsymbol{b}^{2}
$$

The eccentricity is a measure of how "stretched" the ellipse is. $e=\frac{c}{a}$ \boldsymbol{a}

$$
e=0.1
$$

more circular

$e=0.86$
≈ 1 more elliptical (elongated)

Eccentricity: $\boldsymbol{e}=\frac{c}{c}$ Ellipses
horizontal $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

 ends of major axis

$$
\begin{gathered}
\text { Foci }(\pm c, 0), c^{2}=a^{2}-b^{2} \quad \text { Foci }(0, \pm c), c^{2}=a^{2}-b^{2} \\
\boldsymbol{c}^{2}=\boldsymbol{a}^{2}-\boldsymbol{b}^{2}
\end{gathered}
$$

2 foci located on major axis "c" units from the center

Add notes to pink sheet as needed

Label the vertices and foci for the given

4. (a) $\frac{x^{2}}{\left(5^{2}\right)}+\frac{y^{2}}{\text { largest }_{2}^{2}}=1$

(b) $\frac{x^{2}}{4^{2}}+\frac{y^{2}}{\frac{5^{2}}{\text { largest }^{2}}}=1$

\#5-8: Match the equations with the graphs

$$
\text { 7. } 4 x^{2}+y^{2}=4
$$

8. $16 x^{2}+25 y^{2}=400$

II.

III.

IV.

$$
\begin{aligned}
& \begin{array}{c}
\text { IV) } \\
\frac{k^{2}}{1}+\frac{y^{2}}{9}=1 \begin{array}{c}
\text { vertical } \\
b_{2}^{2} \\
\text { Gargest } \\
a=3 \\
b=1
\end{array}
\end{array}
\end{aligned}
$$

\#5-8: Match the equations with the graphs

 (write equation, show work!)$$
\begin{aligned}
& \text { 5. } \frac{x^{2}}{16}+\frac{y^{2}}{4}=1 \\
& \text { 6. } x^{2}+\frac{y^{2}}{9}=1
\end{aligned}
$$

I.

III.

IV.
II.

$$
\begin{aligned}
& a=5 \\
& b=4
\end{aligned}
$$

\#11-21odd

$$
\operatorname{maj}_{0} \text { or }=2 a=2(9)=18
$$

(a) Find the vertices, foci, eccentricity. minor $=2 b$
(b) Determine lengths of major and minor axes.
(c) Sketch

$$
\text { 11. } \frac{\mathbf{x}^{2}}{b_{b}^{2}}+\frac{\boldsymbol{y}^{2}}{\left(\frac{\text { vertical }}{a^{2}}\right. \text { center }}=1(0,0)
$$

$$
b=\sqrt{36}
$$

$a=\sqrt{81}$ $b=6$
$a=9 \uparrow$

graph first, then identify vertices foci foccintricity
ecenter
\#11-21odd

$$
e=\frac{c}{a} \rightarrow e=\frac{3 \sqrt{5}}{9}
$$

(a) Find the vertices, foci, eccentricity., so $e=\frac{\sqrt{5}}{3}$
(b) Determine lengths of major and minor axes.
(c) Sketch

$$
\begin{aligned}
& \text { 11. } \frac{\mathbf{x}^{2}}{36}+\frac{y^{2}}{81}=1 \\
& b^{3} \\
& b=6 \quad a=9
\end{aligned}
$$

